skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Scannell, Adam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Solvothermal liquefaction (STL) is a thermochemical conversion technique that employs solvents other than water to transform waste plastics into valuable compounds. The objective of this study was to explore the potential use of supercritical toluene, a nonpolar solvent, for the depolymerization of four electrical waste (e-waste) thermoplastics, namely polyamide (PA), polycarbonate (PC), polyoxymethylene (POM), and polyether ether ketone (PEEK), into liquid products. Depolymerization experiments were carried out in batch reactors at three reaction temperatures (325, 350, and 375 ◦C), and three residence times (1, 3, and 6 h). The findings revealed that increasing STL temperature and extending the reaction time enhances the depolymerization of e-waste thermoplastics. The highest STL conversation (100 %) was observed for POM, and the lowest STL conversation (32.23 %) was observed for PEEK. Additionally, the ultimate analysis showed that the liquid product obtained from STL at 375 ◦C and 6 h exhibited higher heating values (HHV) within the range of 31.43 to 35.31 MJ/kg. Thermogravimetric analysis (TGA) demonstrated that the boiling point distributions of liquid products are highly dependent on thermoplastic type. Finally, the reaction mechanisms of STL for PA, PC, POM, and PEEK were proposed based on gas chromatography-mass spectrometry (GCMS) analysis. 
    more » « less
  2. Abstract This study focused on evaluating the reduction of chlorine content in waste polyvinyl chloride (WPVC) through high‐temperature catalytic hydrothermal treatment (HTT). Catalytic HTT experiments were carried out to evaluate the effect of noble metal catalysts (Ru/C, Pt/C, and Pd/C), residence time (0.5, 1, 2, and, 4 h), reaction temperature (300, 325, and 350°C), and catalyst loading (0, 5, and 10 wt%). The findings indicated that dechlorination efficiency can be achieved by 99.01% at 350°C and 1 h, with 10 wt% Pd/C loading. Based on chlorine balance, the chlorine content of the solid phase significantly decreased from 568.8 to 5.64 g kg−1at the same condition. The catalytic HTT solid residue ash has low chlorine content under most operational conditions. These results suggest that catalytic HTT is an effective method to dechlorinate WPVC as a high‐halogenated waste plastic in order to reduce its harmful effect on the environment. 
    more » « less